Improvement of Memory-Based Estimation by Distributed Neighborhood Selection
نویسندگان
چکیده
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولDifferential Neighborhood Selection In Memory-Based Group Recommender Systems
As recommender systems have become commonplace to support individual decision making, a need has also been recognized for systems that tailor and provide recommendations to a group of users together rather than individuals alone. Group recommender research to date has focused on evaluating strategies for aggregating profiles of group members to form a consolidated group profile or for aggregati...
متن کاملSelection-based Weak Sequential Consistency Models for Distributed Shared Memory
Based on time, processor, and data selection techniques, a group of Weak Sequential Consistency models have been proposed to improve the performance of Sequential Consistency for Distributed Shared Memory. These models can guarantee Sequential Consistency for data-race-free programs that are properly labelled. This paper reviews and discusses these models in terms of their use of the selection ...
متن کاملImprovement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
متن کاملDistance-based adaptive k-neighborhood selection
The k-nearest neighbor classifier follows a simple, yet powerful algorithm: collect the k data points closest to an unlabeled instance, according to a given distance measure, and use them to predict that instance’s label. The two components, the parameter k governing the size of used neighborhood, and the distance measure, essentially determine success or failure of the classifier. In this work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Institute of Systems, Control and Information Engineers
سال: 2005
ISSN: 1342-5668,2185-811X
DOI: 10.5687/iscie.18.368